In this paper we consider the matrix nonautonomous semidiscrete (or lattice) equationas well as the scalar case thereof. This equation was recently derived in the context of auto-Bäcklund transformations for a matrix partial differential equation. We use asymptotic techniques to reveal a connection between this equation and the matrix (or, as appropriate, scalar) first Painlevé equation. In the matrix case, we also discuss our asymptotic analysis more generally, as well as considering a component-wise approach. In addition, Hamiltonian formulations of the matrix first and second Painlevé equations are given, as well as a discussion of classes of solutions of the matrix second Painlevé equation.