Accurate cost estimation at the early stage of a construction project is a key factor in the success of most projects. Many difficulties arise when estimating the cost during the early design stage in customized furniture manufacturing. It is important to estimate the product cost in the earlier manufacturing phase. The cost estimation is related to the prediction of the cost, which commonly includes calculation of the materials, labor, sales, overhead, and other costs. Historical data of the previously manufactured products can be used in the cost estimation process of the new products. In this paper, we propose an early cost estimation approach, which is based on machine learning techniques. The experimental investigation based on the real customized furniture manufacturing data is performed, results are presented, and insights are given.