Seasonal physiological plasticity (acclimatisation) facilitates homeostasis in changing environments and has been studied extensively with respect to thermal biology and metabolism. Less is known about seasonal changes in evaporative water loss (EWL) in response to changing water availability and humidity. The wet–dry tropics of northern Australia experiences moderate seasonal temperature changes, but substantial changes in rainfall and humidity. We studied three gecko species (Amalosia rhombifer, Heteronotia binoei and Hemidactylus frenatus) in the wet and dry seasons with respect to their EWL, preferred body temperatures (Tpref), and their choice between a dry and humid refuge at and below Tpref. EWL was significantly lower in the dry season (66% of wet season values). Tpref for two of the species did not change seasonally, but A. rhombifer selected lower Tpref during the warmer wet season. Given a choice of refugia, the humid refuge at low temperatures was never preferred over the warm microhabitat. When both refugia were at preferred temperature, only A. rhombifer showed a significant preference for the humid microhabitat. These results demonstrate that although thermoregulation is prioritised in the short term, hydroregulation (physiological plasticity in EWL) is adjusted in the longer term, with shifts occurring on a seasonal scale. However, previous studies suggest shifts in EWL may occur in response to prevailing weather conditions on an even shorter timescale. Before broad generalisations can be drawn about the phenomenon of EWL plasticity, measurements need to be taken from more species in different climatic regions at ecologically relevant timescales.