Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Phased telomere to telomere (T2T) genome assemblies are revolutionising our understanding of long hidden genome biology "dark matter" such as centromeres, rDNA repeats, inter-haplotype variation, and allele specific expression (ASE). Yet insights into dikaryotic fungi that separate their haploid genomes into distinct nuclei is limited. Here we explore the impact of dikaryotism on the genome biology of a long-term asexual clone of the wheat pathogenic fungus Puccinia striiformis f. sp. tritici. We use Oxford Nanopore (ONT) duplex sequencing combined with Hi-C to generate a T2T nuclear-phased assembly with >99.999% consensus accuracy. We show that this fungus has large regional centromeres enriched in LTR retrotransposons with a single centromeric dip in methylation that suggests one kinetochore attachment site per chromosomes. The centromeres of chromosomes pairs are most often highly diverse in sequence and kinetochore attachment sites are not always positionally conserved. Each nucleus carries a unique array of rDNAs with >200 copies that harbour nucleus-specific sequence variations. The inter-haplotype diversity between the two nuclear genomes is caused by large-scale structural variations linked to transposable elements. Nanopore long-read cDNA analysis across distinct infection conditions revealed pervasive allele specific expression for nearly 20% of all heterozygous gene pairs. Genes involved in plant infection were significantly enriched in ASE genes which appears to be mediated by elevated CpG gene body methylation of the lower expressed pair. This suggests that epigenetically regulated ASE is likely a previously overlooked mechanism facilitating plant infection. Overall, our study reveals how dikaryotism uniquely shapes key eukaryotic genome features.
Phased telomere to telomere (T2T) genome assemblies are revolutionising our understanding of long hidden genome biology "dark matter" such as centromeres, rDNA repeats, inter-haplotype variation, and allele specific expression (ASE). Yet insights into dikaryotic fungi that separate their haploid genomes into distinct nuclei is limited. Here we explore the impact of dikaryotism on the genome biology of a long-term asexual clone of the wheat pathogenic fungus Puccinia striiformis f. sp. tritici. We use Oxford Nanopore (ONT) duplex sequencing combined with Hi-C to generate a T2T nuclear-phased assembly with >99.999% consensus accuracy. We show that this fungus has large regional centromeres enriched in LTR retrotransposons with a single centromeric dip in methylation that suggests one kinetochore attachment site per chromosomes. The centromeres of chromosomes pairs are most often highly diverse in sequence and kinetochore attachment sites are not always positionally conserved. Each nucleus carries a unique array of rDNAs with >200 copies that harbour nucleus-specific sequence variations. The inter-haplotype diversity between the two nuclear genomes is caused by large-scale structural variations linked to transposable elements. Nanopore long-read cDNA analysis across distinct infection conditions revealed pervasive allele specific expression for nearly 20% of all heterozygous gene pairs. Genes involved in plant infection were significantly enriched in ASE genes which appears to be mediated by elevated CpG gene body methylation of the lower expressed pair. This suggests that epigenetically regulated ASE is likely a previously overlooked mechanism facilitating plant infection. Overall, our study reveals how dikaryotism uniquely shapes key eukaryotic genome features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.