2023
DOI: 10.15388/23-infor522
|View full text |Cite
|
Sign up to set email alerts
|

Benchmark for Hyperspectral Unmixing Algorithm Evaluation

Vytautas Paura,
Virginijus Marcinkevičius

Abstract: Over the past decades, many methods have been proposed to solve the linear or nonlinear mixing of spectra inside the hyperspectral data. Due to a relatively low spatial resolution of hyperspectral imaging, each image pixel may contain spectra from multiple materials. In turn, hyperspectral unmixing is finding these materials and their abundances. A few main approaches to performing hyperspectral unmixing have emerged, such as nonnegative matrix factorization (NMF), linear mixture modelling (LMM), and, most rec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 45 publications
0
0
0
Order By: Relevance