Children receiving radiotherapy face the probability of a subsequent malignant neoplasm (SMN). In some cases, the predicted SMN risk can be reduced by proton therapy. The purpose of this study was to apply the most comprehensive dose assessment methods to estimate the reduction in SMN risk after proton therapy vs. photon therapy for a 13-year-old girl requiring craniospinal irradiation (CSI). We reconstructed the equivalent dose throughout the patient’s body from therapeutic and stray radiation and applied SMN incidence and mortality risk models for each modality. Excluding skin cancer, the risk of incidence after proton CSI was a third of that of photon CSI. The predicted absolute SMN risks were high. For photon CSI, the SMN incidence rates greater than 10% were for thyroid, non-melanoma skin, lung, colon, stomach, and other solid cancers, and for proton CSI they were non-melanoma skin, lung, and other solid cancers. In each setting, lung cancer accounted for half the risk of mortality. In conclusion, the predicted SMN risk for a 13-year-old girl undergoing proton CSI was reduced vs. photon CSI. This study demonstrates the feasibility of inter-institutional whole-body dose and risk assessments and also serves as a model for including risk estimation in personalized cancer care.