2020 IEEE High Performance Extreme Computing Conference (HPEC) 2020
DOI: 10.1109/hpec43674.2020.9286232
|View full text |Cite
|
Sign up to set email alerts
|

Benchmarking network fabrics for data distributed training of deep neural networks

Abstract: Artificial Intelligence/Machine Learning applications require the training of complex models on large amounts of labelled data. The large computational requirements for training deep models have necessitated the development of new methods for faster training. One such approach is the data parallel approach, where the training data is distributed across multiple compute nodes. This approach is simple to implement and supported by most of the commonly used machine learning frameworks. The data parallel approach … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 24 publications
0
0
0
Order By: Relevance