2024
DOI: 10.1088/2632-2153/ad7cc1
|View full text |Cite
|
Sign up to set email alerts
|

Benchmarking of quantum fidelity kernels for Gaussian process regression

Xuyang Guo,
Jun Dai,
Roman V Krems

Abstract: Quantum computing algorithms have been shown to produce performant quantum kernels for machine-learning classification problems. Here, we examine the performance of quantum kernels for regression problems of practical interest. For an unbiased benchmarking of quantum kernels, it is necessary to construct the most optimal functional form of the classical kernels and the most optimal quantum kernels for each given data set. We develop an algorithm that uses an analog of the Bayesian information criterion to opti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 73 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?