This paper proposes a deep learning-based optimal battery management scheme for frequency regulation (FR) by integrating model predictive control (MPC), supervised learning (SL), reinforcement learning (RL), and high-fidelity battery models. By taking advantage of deep neural networks (DNNs), the derived DNN-approximated policy is computationally efficient in online implementation. The design procedure of the proposed scheme consists of two sequential processes: (1) the SL process, in which we first run a simulation with an MPC embedding a low-fidelity battery model to generate a training data set, and then, based on the generated data set, we optimize a DNN-approximated policy using SL algorithms; and (2) the RL process, in which we 1