a b s t r a c tLattice truss reinforced honeycombs (LTRHs), termed honeytubes, were developed based on a hybrid design of micro-lattice truss and square honeycomb topologies. Carbon fiber reinforced composite and polymer LTRHs were fabricated using different manufacturing approaches. Out-of-plane compression tests were performed on the LTRHs, and the properties were compared with the conventional square honeycombs. The stiffness and strength values of composite LTRHs didn't surpass those of composite square honeycombs due to the manually induced defects. On the other hand, polymeric LTRHs with perfect geometries were stiffer and stronger than the corresponding polymeric square honeycombs. A parametric study of the buckling resistance was carried out via finite element analysis, and the results indicated that hollow lattice stiffens honeycombs and increases the resistance to buckling, while the specific properties of honeytubes depend on their geometrical parameters. Moreover, the crush force efficiency and specific energy absorption were greater than those of square honeycombs and hollow lattice. This work demonstrates that hybrid designs that capitalize on micro-topologies can populate vacant regions in mechanical property charts, and provide increased energy absorption as crushing protection structures.