Deployable structures are extensively used in engineering. A bistable panel structure, inspired by multi-stable origami, is proposed, capable of deployment and folding powered by air pressure. Prototypes were manufactured using planar laser etching technology based on geometric design. Mechanical behavior under out-of-plane compression, in-plane compression, and out-of-plane bending loads was analyzed through experiments. The foldable panel showed superior mechanical performance under out-of-plane compression, highlighting its potential as an ideal energy-absorbing material. In-plane compression and out-of-plane bending along the folding direction exhibited lower strength due to foldability, with failure modes involving rigidity loss from folding. The structure demonstrated good energy absorption characteristics during in-plane compression. As the angle of the unit increased during out-of-plane bending, mechanical performance improved, but the failure mode shifted to fracture. In in-plane compression and out-of-plane bending perpendicular to the folding direction, mechanical performance was enhanced, but the structure failed due to strength loss from fracture.