Oxidative stress may be involved in the cellular damage and tissue destruction as burn wounds continues to progress after abatement of the initial insult. Since iron and calcium ions play key roles in oxidative stress, this study tested whether topical application of Livionex formulation (LF) lotion, that contains disodium EDTA as a metal chelator and methyl sulfonyl methane (MSM) as a permeability enhancer, would prevent or reduce burn injury.
Methods
We used an established brass comb burn model with some modifications. Topical application of LF lotion was started 5 minutes post-burn, and repeated every 8 hours for 3 consecutive days. Rats were euthanized and skin harvested for histochemistry and immunohistochemistry. Formation of protein adducts of 4-hydroxynonenal (HNE), malonadialdehyde (MDA) and acrolein (ACR) and expression of aldehyde dehydrogenase (ALDH) isozymes, ALDH1 and ALDH2 were assessed.
Results
LF lotion-treated burn sites and interspaces showed mild morphological improvement compared to untreated burn sites. Furthermore, the lotion significantly decreased the immunostaining of lipid aldehyde-protein adducts including protein -HNE, -MDA and -ACR adducts, and restored the expression of aldehyde dehydrogenase isozymes in the unburned interspaces.
Conclusion
This data, for the first time, demonstrates that a topically applied EDTA-containing lotion protects burn injury progression with a concomitant decrease in the accumulation of reactive lipid aldehydes and protection of aldehyde dehydrogenase isozymes. Present studies are suggestive of therapeutic intervention of burn injury by this novel lotion.