Background and Purpose
Enhanced angiogenesis facilitates neurovascular remodeling processes and promotes brain functional recovery after stroke. Previous studies from our laboratory demonstrated that valproate (VPA), a histone deacetylase (HDAC) inhibitor, protects against experimental brain ischemia. The present study investigated whether VPA could enhance angiogenesis and promote long-term functional recovery after ischemic stroke.
Methods
Male rats underwent middle cerebral artery occlusion (MCAO) for 60 minutes followed by reperfusion for up to 14 days. Assessed parameters were: locomotor function via rotarod test; infarct volume via T2-weighted magnetic resonance imaging; microvessel density via immunohistochemistry; relative cerebral blood flow (rCBF) via perfusion-weighted imaging; protein levels of pro-angiogenic factors via Western blotting; and matrix metalloproteinase (MMP)-2/9 activities via gelatin zymography.
Results
Post-ischemic VPA treatment robustly improved the rotarod performance of MCAO rats on days 7 and 14 after ischemia, and significantly reduced brain infarction on day 14. Concurrently, VPA markedly enhanced microvessel density, facilitated endothelial cell proliferation, and increased rCBF in the ipsilateral cortex. The transcription factor hypoxia-inducible factor (HIF)-1α and its downstream pro-angiogenic factors, vascular endothelial growth factor (VEGF) and MMP-2/9, were upregulated after MCAO and significantly potentiated by VPA in the ipsilateral cortex. Acetylation of histone-H3 and H4 was robustly increased by chronic VPA treatment. The beneficial effects of VPA on rotarod performance and microvessel density were abolished by HIF-1α inhibition.
Conclusions
Chronic VPA treatment enhances angiogenesis and promotes functional recovery after brain ischemia. These effects may involve HDAC inhibition and upregulation of HIF-1α and its downstream pro-angiogenic factors VEGF and MMP-2/9.