In contrast to road-based traffic, the track as well as the corresponding duty cycle for railways are known beforehand, which represents a great advantage during the development of operating strategies for hybrid vehicles. Hence the benefits of hybrid vehicles regarding the fuel consumption can be exploited by means of an off-line optimisation. In this article, the fuel-optimal operating strategy is calculated for one specified track using two hybrid railway vehicles with different kinds of energy storage systems: on the one hand, a lithium-ion battery (high-energy storage) and, on the other, a double layer capacitor (high-power storage). For this purpose, control-oriented simulation models are developed for each architecture addressing the main effects contributing to the longitudinal dynamics of the power train. Based on these simulation models, the fuel-optimal operating strategy is calculated by two different approaches: Bellman’s dynamic programming, a wellknown approach in this field, and an innovative sensitivity-based optimisation.