Sleep is known to elicit off-line improvements of newly learned procedural skills, a phenomenon attributed to enhancement consolidation of an internal skill representation. In the motor domain, enhancement consolidation has been reported almost exclusively for sequential-finger-tapping skills. The aim of the present study was to extend the notion of sleep-related enhancement consolidation to tasks closer to everyday motor skills. This was achieved by employing a sequence of unrestrained reaching-movements with the non-dominant arm. Fifteen reaching-movements had to be executed as fast as possible, following a spatial pattern in the horizontal plane. Terminating each movement, a peg had to be fitted into a hole on an electronic pegboard. Two experimental groups received initial training, one in the evening, the other one in the morning. Subsequently, performance in both groups was retested twelve, and again 24 hrs later. Thus, during retention each individual experienced a night of sleep, either followed or preceded by a wake interval. Performance error remained low throughout training and retests. Yet mean total execution time, indicative of task execution-speed, significantly decreased for all individuals throughout initial training (no group differences), and significantly decreased again in either group following nocturnal sleep, but not following wake. This finding does not appear to result merely from additional practice afforded at the time of retests, because only after a night of sleep individuals of both experimental groups also revealed performance improvement beyond that estimated from their initial training performance.