(2015) Albumin-deficient mouse models for studying metabolism of human albumin and pharmacokinetics of albumin-based drugs, mAbs, 7:2, 344-351, DOI: 10.1080DOI: 10. /19420862.2015 To link to this article: https://doi.org/10. 1080/19420862.2015 Serum albumin is the major determinant of blood colloidal osmotic pressure acting as a depot and distributor of compounds including drugs. In humans, serum albumin exhibits an unusually long half-life mainly due to protection from catabolism by neonatal Fc receptor (FcRn)-mediated recycling. These properties make albumin an attractive courier of therapeutically-active compounds. However, pharmaceutical research and development of albumin-based therapeutics has been hampered by the lack of appropriate preclinical animal models. To overcome this, we developed and describe the first mouse with a genetic deficiency in albumin and its incorporation into an existing humanized FcRn mouse model, B6.Cg-Fcgrt tm1Dcr Tg(FCGRT)32Dcr/DcrJ (Tg32). Albumin-deficient strains (Alb -/-) were created by TALEN-mediated disruption of the albumin (Alb) gene directly in fertilized oocytes derived from Tg32 mice and its nontransgenic background control, C57BL/6J (B6). The resulting Alb -/-strains are analbuminemic but healthy. Intravenous administration of human albumin to Tg32-Alb -/-mFcRn -/-hFcRn Tg/Tg ) mice results in a remarkably extended human albumin serum half-life of »24 days, comparable to that found in humans, and in contrast to half-lives of 2.6-5.8 d observed in B6, B6-Alb -/-and Tg32 strains. This striking increase can be explained by the absence of competing endogenous mouse albumin and the presence of an active human FcRn. These novel albumin-deficient models provide unique tools for investigating the biology and pathobiology of serum albumin and are a more appropriate rodent surrogates for evaluating human serum albumin pharmacokinetics and albumin-based compounds.