2001
DOI: 10.1090/dimacs/056/06
|View full text |Cite
|
Sign up to set email alerts
|

Bent, resilient functions and the numerical normal form

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
4

Year Published

2004
2004
2018
2018

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 15 publications
(11 citation statements)
references
References 0 publications
0
7
0
4
Order By: Relevance
“…for all ð1; y; 1ÞauAU: Theorem 1.1 is a combination of Proposition 1 of [4] and a result of [3]. A binary function f AFðF n 2 ; F 2 Þ is called t-resilient if fðcÞ ¼ 0 for all cAF n 2 with jcjpt:…”
Section: Introductionmentioning
confidence: 99%
“…for all ð1; y; 1ÞauAU: Theorem 1.1 is a combination of Proposition 1 of [4] and a result of [3]. A binary function f AFðF n 2 ; F 2 Þ is called t-resilient if fðcÞ ¼ 0 for all cAF n 2 with jcjpt:…”
Section: Introductionmentioning
confidence: 99%
“…For example, quadratic bent functions have an important place in bent function construction. All bent functions from this class are known and they can be obtained by applying the affine transformations to the variables of the function [7].…”
Section: Construction Of Bent Functionsmentioning
confidence: 99%
“…As noticed above, in this paper, we use the so-called Hadamard ordering of RM coefficients originating in the Kronecker product structure of the Reed-Muller matrix in (4). In this ordering, for a given n, we can determine positions of coefficients which cannot be 1 by referring to (7). Definition 6 A bent function belongs to the Horizontal (k min , k max )-subset H(k min , k max ) iff it has the minimum k min and the maximum k max order of RM coefficients.…”
Section: Horizontal Subsetmentioning
confidence: 99%
“…En esta sección se definen las funciones bent f : F n 2 → F 2 . La definición de función bent así como varias de sus propiedades podemos encontrarlas en varias referencias, por ejemplo [4], [5], [23]…”
Section: Funciones Bentunclassified
“…No está demás mencionar que para n = 2 y n = 4 en B n existen 8 y 896 funciones bent respectivamente. Es un problema abierto contar estas funciones para valores grandes de n ( [5]).…”
Section: Funciones Bentunclassified