This work demonstrates the impact of hydroxylamine hydrochloride (HAH) addition on enhancing the degradation of trichoroethene (TCE) by the citric acid (CA)-chelated Fe(II)-catalyzed percarbonate (SPC) system. The results of a series of batch-reactor experiments show that TCE removal with HAH addition was increased from approximately 57% to 79% for a CA concentration of 0.1 mM and from 89 to 99.6% for a 0.5 mM concentration. Free-radical probe tests elucidated the existence of hydroxyl radical (HO•) and superoxide anion radical (O2•-) in both CA/Fe(II)/SPC and HAH/CA/Fe(II)/SPC systems. However, higher removal rates of radical probe compounds was observed in the HAH/CA/Fe(II)/SPC system, indicating that HAH addition enhanced the generation of both free radicals. In addition, increased contribution of O2•- in the HAH/CA/Fe(II)/SPC system compared to the CA/Fe(II)/SPC system was verified by free-radical scavengers tests. Complete TCE dechlorination was indicated based on the total mass balance of released Cl- species. Lower concentrations of formic acid were produced in the later stages of the reaction for the HAH/CA/Fe(II)/SPC system, suggesting that HAH addition favors complete TCE mineralization. Studies of the impact of selected groundwater matrix constituents indicates that TCE removal in the HAH/CA/Fe(II)/SPC system is pH-dependent, with higher removal rates under acidic conditions. Although HCO3- was observed to have an adverse impact on TCE removal for the HAH/CA/Fe(II)/SPC system, the addition of HAH reduced its inhibitory effect compared to the CA/Fe(II)/SPC system. Finally, TCE removal in real groundwater was greater with the addition of HAH to the CA/Fe(II)/SPC system. The study results indicate that HAH amendment has potential to enhance effective remediation of TCE-contaminated groundwater.