Background: Benzo(a)pyrene (BaP), an environmental toxicant and endocrine disruptor, has been shown to exacerbate atherosclerosis when combined with a high-fat diet. Fibroblast Growth Factor-21 (FGF21), a novel hormone with anti-atherosclerotic properties, is associated with the presence of atherosclerosis and reduces plaque formation in experimental animals. Objectives: The present study aimed to investigate the chronic effect of BaP injection on hepatic FGF21 expression, as an anti-atherosclerotic hormone, in mice fed with or without an atherogenic diet (AtD). Methods: Eighteen C57BL/6J male mice (6 weeks) were randomly divided into six groups based on the dosage and diet. Blood samples were collected, and serum cholesterol, triglyceride, HDL-C, LDL-C, and glucose levels were measured. FGF21 expression was assessed by quantitative real-time PCR. Atherosclerotic lesions in mice were studied with Oil Red O (ORO) staining. Results: Benzo(a)pyrene causes a significant increase in liver FGF21 expression in a dose-dependent manner, and BaP co-exposure with AtD leads to a further increase in FGF21 expression. Additionally, the addition of BaP to AtD significantly increased the serum glucose, cholesterol, and LDL-C levels and accelerated the formation of atherosclerotic lesions. Besides, our findings showed that there is a significant positive correlation between FGF21 expression and glucose, cholesterol, LDL-C, and ORO-positive areas. Conclusions: Our findings revealed that BaP increases the expression of endogenous FGF21 in treated animals as a compensatory response to protect the heart from atherosclerosis induced by BaP and AtD.