In this paper, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) is adopted as a bifunctional electrolyte additive, which is identified to effectively stabilize the surface for both graphite anode and LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523) cathode within the graphite/NCM523 full cell. The overall electrochemical performances of the full cell are significantly enhanced with 3 wt % TTE additive in a conventional organic electrolyte. A combination of studies of scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy show that a uniform, compact, and stable solid electrolyte interphase (SEI) with improved mechanics on the graphite anode and an effective cathode electrolyte interphase (CEI) on the NCM523 cathode is developed. The electron-withdrawing C−F group contributes to the stable and compact surface film, which explains the electrochemical enhancement of the NCM523/ graphite full cell.