1925
DOI: 10.1007/bf01328494
|View full text |Cite
|
Sign up to set email alerts
|

�ber die Zahl der Dispersionselektronen, die einem station�ren Zustand zugeordnet sind

Abstract: Es wird dureh Verschiixfnng des Korrespondenzprinzips ein einfacher Summensatz fiir die fdbergangswahrscheinlichkeitea abgeleitet, der zur Folge hat, daft in gewissen Fiillen (Absorption; Dispersion und Zerstreuung von RSntgenstrahlen) die klassisehen Resultate exakt gelten, und der es terrier erlaubt~ bet einfachen Systemen (0szillator, Rotator) die einzelnen ~bergangswahrscheinlichkeiten zu berechnen 2).

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
116
0
1

Year Published

1928
1928
2022
2022

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 267 publications
(119 citation statements)
references
References 0 publications
2
116
0
1
Order By: Relevance
“…The importance of the continuum states may also be understood by considering the Thomas-Reiche-Kuhn or f -sum rule for an isolated system [18][19][20],…”
Section: Resultsmentioning
confidence: 99%
“…The importance of the continuum states may also be understood by considering the Thomas-Reiche-Kuhn or f -sum rule for an isolated system [18][19][20],…”
Section: Resultsmentioning
confidence: 99%
“…(2) allows us to derive a Thomas-Reiche-Kuhn-type [59][60][61] sum rule that may be useful to bound the QFI. Since tanh ω 2T ≤ ω 2T , we have…”
Section: S5 Sum Rulementioning
confidence: 99%
“…Perhaps the best known sum rule in the atomic theory is the TRK sum rule [4][5][6]. This rule relates the dipole terms zqi between the quantum levels q) and |i) which are coupled by the electric potential field directed along z-axis, namely with the energy differences of the states | q) and |i) given by Let |i) be an initial level and q) is a finite level.…”
Section: Sum Rules For Electron Transitions Between the Atomic Quantumentioning
confidence: 99%