Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background and PurposeTriple‐negative breast cancer (TNBC) has a poor prognosis due to limited therapeutic options. Recent studies have shown that TNBC is highly dependent on mitochondrial oxidative phosphorylation. The aim of this study was to investigate the potential of coptisine, a novel compound that inhibits the complex I of the mitochondrial electron transport chain (ETC), as a treatment for TNBC.Experimental ApproachIn this study, mitochondrial metabolism in TNBC was analysed by bioinformatics. In vitro and in vivo experiments (in mice) were conducted to evaluate the potential of coptisine as an ETC complex I‐targeting therapeutic agent and to investigate the molecular mechanisms underlying coptisine‐induced mitochondrial dysfunction. The therapeutic effect of coptisine was assessed in TNBC cells and xenograft mouse model.Key ResultsWe demonstrated that mitochondrial ETC I was responsible for this metabolic vulnerability in TNBC. Furthermore, a naturally occurring compound, coptisine, exhibited specific inhibitory activity against this complex I. Treatment with coptisine significantly inhibited mitochondrial functions, reprogrammed cellular metabolism, induced apoptosis and ultimately inhibited the proliferation of TNBC cells. Additionally, coptisine administration induced prominent growth inhibition that was dependent on the presence of a functional complex I in xenograft mouse models.Conclusion and ImplicationsAltogether, these findings suggest the promising potential of coptisine as a potent ETC complex I inhibitor to target the metabolic vulnerability of TNBC.
Background and PurposeTriple‐negative breast cancer (TNBC) has a poor prognosis due to limited therapeutic options. Recent studies have shown that TNBC is highly dependent on mitochondrial oxidative phosphorylation. The aim of this study was to investigate the potential of coptisine, a novel compound that inhibits the complex I of the mitochondrial electron transport chain (ETC), as a treatment for TNBC.Experimental ApproachIn this study, mitochondrial metabolism in TNBC was analysed by bioinformatics. In vitro and in vivo experiments (in mice) were conducted to evaluate the potential of coptisine as an ETC complex I‐targeting therapeutic agent and to investigate the molecular mechanisms underlying coptisine‐induced mitochondrial dysfunction. The therapeutic effect of coptisine was assessed in TNBC cells and xenograft mouse model.Key ResultsWe demonstrated that mitochondrial ETC I was responsible for this metabolic vulnerability in TNBC. Furthermore, a naturally occurring compound, coptisine, exhibited specific inhibitory activity against this complex I. Treatment with coptisine significantly inhibited mitochondrial functions, reprogrammed cellular metabolism, induced apoptosis and ultimately inhibited the proliferation of TNBC cells. Additionally, coptisine administration induced prominent growth inhibition that was dependent on the presence of a functional complex I in xenograft mouse models.Conclusion and ImplicationsAltogether, these findings suggest the promising potential of coptisine as a potent ETC complex I inhibitor to target the metabolic vulnerability of TNBC.
Objective Previous studies have shown that fraxetin has antitumor activity in a variety of tumors, but its role in acute myeloid leukemia (AML) remains unclear. In this study, we aimed to evaluate the anti-AML effect of fraxetin through cell experiments and network pharmacology analysis. Methods The inhibitory and apoptotic effects of fraxetin on AML cells were determined by CCK-8 and flow cytometry experiments. Potential targets of fraxetin and AML-related targets were screened using public databases. PPI network, GO functional enrichment and KEGG pathway enrichment analyses were performed to predict the hub targets and signaling pathways by which fraxetin alleviates AML. Molecular docking was used to determine the fraxetin binding sites on hub targets. Using the GEPIA database, the expression of hub targets was analyzed in relation to the overall survival of AML patients. Results Cell experiments showed that fraxetin inhibits AML cell proliferation and induces apoptosis. To explore the potential mechanism of fraxetin, 29 shared targets of fraxetin and AML were obtained through screening online public databases. Among them, AKT1, TNF, SRC, etc., are related to AML cell apoptosis. The expression levels of SRC, NOS3, VAV1, LYN, and PTGS1 were associated with the overall survival of AML patients (p value < 0.05). The enrichment analysis results identified the main pathways, namely, focal adhesion and the PI3K-AKT signaling pathway, that affected the proliferation and apoptosis of AML cells. The analysis of hub targets of the PPI network showed that AKT1, TNF, CTNNB1, etc., were hub targets, which were related to the proliferation and apoptosis of AML cells. The results of molecular docking showed that the hub targets had good binding with fraxetin. Conclusion Fraxetin may inhibit AML cell proliferation and induce AML cell apoptosis through multiple targets, such as AKT1, SRC, and EGFR, and multiple pathways, such as focal adhesion and the PI3K-AKT signaling pathway.
Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy; we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.