İşlevsel Hilbert uzayları, istatistik, yaklaşım teorisi, grup temsili teorisi, vb. dahil olmak üzere birçok alanda ortaya çıkar. İşlevsel Hilbert uzay sayesinde tanımlanan Berezin dönüşümü ise, düzgün fonksiyonları analitik fonksiyonların Hilbert uzayları üzerindeki operatörlerle ilişkilerini inceler. Berezin yarıçapını ve Berezin normunu karakterize etmek için bazı çalışmalarda birçok eşitsizlik ve bunların özellikleri vardır. Bu çalışmada fonksiyonel bir Hilbert uzayı üzerinde tanımlanan sınırlı lineer operatörlerin Berezin normu ve Berezin sayısı için yeni eşitsizlikler sunulmuştur. Bu makalenin benzersizliği veya yeniliği, iki operatör için yeni Berezin sayıları tahminlerinden oluşmaktadır. Bu tahminler, diğer benzer makaleler tarafından elde edilen Berezin sayılarının üst sınırlarını iyileştirmiştir. Daha sonra El-Haddad and Kittaneh ([10]) tarafından verilen eşitsizlik genelleştirilmiş ve iyileştirilmiştir. Bu çalışmada fikir ve sunulan metodolojiler, bu alanda gelecekteki araştırmalar için bir başlangıç noktası olarak hizmet edebilir.