Loss of perfusion in the burn wound might cause wound deepening and impaired healing. We previously showed persistent microvascular thrombosis coinciding with intraluminal neutrophils extracellular traps in human burned skin. This study investigates the presence of intraluminal citrullinated histone 3 (H3cit) from different cellular origins (neutrophils, monocytes, and lymphocytes) in relation to microvascular thrombosis of burn wounds. Eschar was obtained from burn patients (n = 18) 6–40 days postburn with a mean total burned body surface area of 23%. Microvascular presence of tissue factor (TF), factor XII (FXII) and thrombi was assessed by immunohistochemistry. Intramicrovascular cell death was analyzed via immunofluorescent microscopy, combining antibodies for neutrophils (MPO), monocytes (CD14), and lymphocytes (CD45) with endothelial cell markers CD31 and H3cit. Significantly increased microvascular expression of TF, FXII, and thrombi (CD31+) was found in all eschar samples compared with control uninjured skin. Release of H3cit from different cellular origins was observed in the lumen of the dermal microvasculature in the eschar tissue 7–40 days postburn, with release from neutrophilic origin being 2.7 times more abundant. Intraluminal presence of extracellular H3cit colocalizing with either MPO, CD14, or CD45 is correlated to increased microvascular thrombosis in eschar of burn patients.