Resumo -O objetivo deste trabalho foi avaliar influência da informação de parentesco na seleção de progênies de soja quanto à produtividade e aos teores de óleo e proteína, com base no uso de modelos mistos de predição dos valores genéticos. Novecentas progênies F 4:6 e 200 progênies F 4:7 de soja foram avaliadas nas safras 2010/2011 e 2011/2012, respectivamente. As progênies foram obtidas de cruzamentos múltiplos a partir de 57 progenitores. Os dados foram analisados por meio de modelos aleatórios (quadrados mínimos) e mistos BLUP/REML ("best linear unbiased prediction/restricted maximum likelihood"). Os maiores valores de ganhos preditos foram obtidos com o BLUP/REML. Os valores genéticos preditos com o método BLUP/REML, sem informação de parentesco, apresentaram alta correlação com aqueles obtidos com o modelo aleatório, além de detectada alta coincidência das progênies selecionadas. A inclusão da matriz de parentesco resultou na seleção de progênies diferentes e em maior acurácia na predição dos valores genéticos.Termos para indexação: Glycine max, BLUP/REML, ganhos de seleção, matriz de parentesco.
Relationship in the selection for productivity and oil and protein contents in soybean using mixed modelsAbstract -The objective of this work was to evaluate the influence of relationship information for selecting soybean progenies as to their productivity, and oil and protein contents, using mixed models for the prediction of breeding values. Nine hundred F 4:6 and 200 F 4:7 soybean progenies were evaluated in the seasons 2010/2011 and 2011/2012, respectively. The progenies were obtained from multiple crosses from 57 parents. Data were analyzed using random models (least squares) and mixed models BLUP/REML (best linear unbiased prediction/restricted maximum likelihood). The highest values of predicted gains were obtained by BLUP/REML. The breeding values predicted with the use of BLUP/REML without relationship information were highly correlated with the ones obtained with the random model, and the selected progenies were rather coincident. The inclusion of the relationship matrix resulted in the selection of different progenies and in higher accuracy of breeding values.