In two phase materials, each phase having a non-local response in time, it has been found that for appropriate driving fields the response somehow untangles at specific times, and allows one to directly infer useful information about the geometry of the material, such as the volume fractions of the phases. Motivated by this, and to find how the appropriate driving fields may be designed, we obtain approximate, measure independent, linear relations between the values that Markov functions take at a given set of possibly complex points, not belonging to the interval [-1,1] where the measure is supported. The problem is reduced to simply one of polynomial approximation of a given function on the interval [-1,1] and to simplify the analysis Chebyshev approximation is used. This allows one to obtain explicit estimates of the error of the approximation, in terms of the number of points and the minimum distance of the points to the interval [-1,1]. Assuming this minimum distance is bounded below by a number greater than 1/2, the error converges exponentially to zero as the number of points is increased. Approximate linear relations are also obtained that incorporate a set of moments of the measure. In the context of the motivating problem, the analysis also yields bounds on the response at any particular time for any driving field, and allows one to estimate the response at a given frequency using an appropriately designed driving field that effectively is turned on only for a fixed interval of time. The approximation extends directly to Markov-type functions with a positive semidefinite operator valued measure, and this has applications to determining the shape of an inclusion in a body from boundary flux measurements at a specific time, when the time-dependent boundary potentials are suitably tailored.