Background
Symptomatic spinal stenosis is a prevalent complication in adults with achondroplasia. Increased muscle fat infiltration (MFI) and reduced thigh muscle volumes have also been reported, but the pathophysiology is poorly understood. We explored whether the increased MFI and reduced thigh muscle volumes were associated with the presence of symptomatic spinal stenosis and physical functioning.
Methods
MFI and thigh muscle volumes were assessed by MRI in 40 adults with achondroplasia, and compared to 80 average-statured controls, matched for BMI, gender, and age. In achondroplasia participants, the six-minute walk-test (6MWT), the 30-s sit-to-stand test (30sSTS), and a questionnaire (the IPAQ) assessed physical functioning.
Results
Symptomatic spinal stenosis was present in 25 of the participants (the stenosis group), while 15 did not have stenosis (the non-stenosis group). In the stenosis group, 84% (21/25) had undergone at least one spinal decompression surgery. The stenosis group had significantly higher MFI than the non-stenosis group, with an age-, gender and BMI-adjusted difference in total MFI of 3.3 percentage points (pp) (95% confidence interval [CI] 0.04 to 6.3 pp; p = 0.03). Compared to matched controls, the mean age-adjusted difference was 3.3 pp (95% CI 1.7 to 4.9 pp; p < 0.01). The non-stenosis group had MFI similar to controls (age-adjusted difference − 0.9 pp, 95% CI − 3.4 to 1.8 pp; p = 0.51). MFI was strongly correlated with the 6MWT (r = − 0.81, − 0.83, and − 0.86; all p-values < 0.01), and moderately correlated with the 30sSTS (r = − 0.56, − 0.57, and − 0.59; all p-values < 0.01). There were no significant differences in muscle volumes or physical activity level between the stenosis group and the non-stenosis group.
Conclusion
Increased MFI in the thigh muscles was associated with the presence of symptomatic spinal stenosis, reduced functional walking capacity, and reduced lower limb muscle strength. The causality between spinal stenosis, accumulation of thigh MFI, and surgical outcomes need further study. We have demonstrated that MRI might serve as an objective muscle biomarker in future achondroplasia studies, in addition to functional outcome measures. The method could potentially aid in optimizing the timing of spinal decompression surgery and in planning of post-surgery rehabilitation.