The findable, accessible, interoperable, reusable (FAIR) principles for scientific data management and stewardship aim to facilitate data reuse at scale by both humans and machines. Research and development (R&D) in the pharmaceutical industry is becoming increasingly data driven, but managing its data assets according to FAIR principles remains costly and challenging. To date, little scientific evidence exists about how FAIR is currently implemented in practice, what its associated costs and benefits are, and how decisions are made about the retrospective FAIRification of datasets in pharmaceutical R&D. This paper reports the results of semi-structured interviews with 14 pharmaceutical professionals who participate in various stages of drug R&D in 7 pharmaceutical businesses. Inductive thematic analysis identified three primary themes of the benefits and costs of FAIRification, and the elements that influence the decision-making process for FAIRifying legacy datasets. Participants collectively acknowledged the potential contribution of FAIRification to data reusability in diverse research domains and the subsequent potential for cost-savings. Implementation costs, however, were still considered a barrier by participants, with the need for considerable expenditure in terms of resources, and cultural change. How decisions were made about FAIRification was influenced by legal and ethical considerations, management commitment, and data prioritisation. The findings have significant implications for those in the pharmaceutical R&D industry who are engaged in driving FAIR implementation, and for external parties who seek to better understand existing practices and challenges.