2023
DOI: 10.1007/s00182-023-00837-4
|View full text |Cite
|
Sign up to set email alerts
|

Best-response dynamics, playing sequences, and convergence to equilibrium in random games

Abstract: We analyze the performance of the best-response dynamic across all normal-form games using a random games approach. The playing sequence—the order in which players update their actions—is essentially irrelevant in determining whether the dynamic converges to a Nash equilibrium in certain classes of games (e.g. in potential games) but, when evaluated across all possible games, convergence to equilibrium depends on the playing sequence in an extreme way. Our main asymptotic result shows that the best-response dy… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 50 publications
0
0
0
Order By: Relevance