Activation of the innate immune system in obesity is a risk factor for the development of type 2 diabetes. The aim of the current study was to investigate the notion that increased numbers of macrophages exist in the islets of type 2 diabetes patients and that this may be explained by a dysregulation of islet-derived inflammatory factors. Increased islet-associated immune cells were observed in human type 2 diabetic patients, high-fat-fed C57BL/6J mice, the GK rat, and the db/db mouse. When cultured islets were exposed to a type 2 diabetic milieu or when islets were isolated from high-fat-fed mice, increased isletderived inflammatory factors were produced and released, including interleukin (IL)-6, IL-8, chemokine KC, granulocyte colony-stimulating factor, and macrophage inflammatory protein 1␣. The specificity of this response was investigated by direct comparison to nonislet pancreatic tissue and -cell lines and was not mimicked by the induction of islet cell death. Further, this inflammatory response was found to be biologically functional, as conditioned medium from human islets exposed to a type 2 diabetic milieu could induce increased migration of monocytes and neutrophils. This migration was blocked by IL-8 neutralization, and IL-8 was localized to the human pancreatic ␣-cell. Therefore, islet-derived inflammatory factors are regulated by a type 2 diabetic milieu and may contribute to the macrophage infiltration of pancreatic islets that we observe in type 2 diabetes. Diabetes 56:2356-2370, 2007 A ctivation of the innate immune system has long been reported in obesity, insulin resistance, and type 2 diabetics and is characterized by increased circulating levels of acute-phase proteins and of cytokines and chemokines (1-5). However, the notion that excess circulating nutrients may stimulate the -cell to produce chemokines remains unexplored, and immune cell infiltration has not been shown in islets of type 2 diabetic patients.One of the most classical chemotactic agents in immunology is the CXC family chemokine, interleukin (IL)-8 (CXCL8) (6). IL-8 is produced by leukocytes, fibroblasts, and endothelial and epithelial cells and is commonly associated with infections, graft rejection, allergy, asthma, cancer, and atherosclerosis. In addition to its effect on neutrophils, the chemotactic effect of IL-8 also is important in mediating monocyte migration (7-9). The rodent does not express IL-8. Instead, the rodent functional homolog of IL-8 is thought to be chemokine KC (CXCL1, or Gro-␣ in the rat), which also has been reported to induce granulocyte and monocyte migration (9). Chemokine KC is thought to be an ortholog of human CXCL1. Circulating levels of IL-8 are elevated in type 2 diabetic individuals (10,11), in whom IL-8 has been implicated in systemic insulin resistance and atherosclerosis (12,13).Thus, we hypothesized that pancreatic islets in type 2 diabetes are characterized by increased macrophage infiltration and that a type 2 diabetic milieu could promote chemokine production in pancreatic islets. ...