1998
DOI: 10.4171/rmi/241
|View full text |Cite
|
Sign up to set email alerts
|

Beta-gamma random variables and intertwining relations between certain Markov processes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

3
88
0
1

Year Published

2004
2004
2021
2021

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 79 publications
(92 citation statements)
references
References 8 publications
3
88
0
1
Order By: Relevance
“…One may remark that these intertwining relations fit in the "filtering type framework" described in [CPY98].…”
Section: Is Either a Discrete Or A Continuous Time Parameter)mentioning
confidence: 99%
See 2 more Smart Citations
“…One may remark that these intertwining relations fit in the "filtering type framework" described in [CPY98].…”
Section: Is Either a Discrete Or A Continuous Time Parameter)mentioning
confidence: 99%
“…First, let us recall the notion of intertwined Markovian semigroups (for some background on the subject, see [CPY98]). Let (P t , t ≥ 0) and (Q t , t ≥ 0) be two Markovian semigroups with respective state spaces (S P , S P ) and (S Q , S Q ), and Λ a Markov transition kernel from (S Q , S Q ) to (S P , S P ).…”
Section: Intertwining Relationsmentioning
confidence: 99%
See 1 more Smart Citation
“…The main conceptual tool in our approach is the notion of an intertwining of Markov semigroups, for which we now provide the needed background in the context (sufficient for our purposes) of finitestate Markov chains. For further background on intertwinings, see [4], [8], [26]. Suppose that we have two state spaces, the first ("primary") of size n and the second ("dual") of sizen.…”
Section: 1mentioning
confidence: 99%
“…La notion d'entrelacement de noyaux markoviens, ou de semi-groupes de tels noyaux, a fait l'objet de plusieurs travaux de Carmona et al [6] (dont Yor), et Hirsch et Yor [13]. Elle s'est révélée très utile dans plusieurs problèmes concernant les processus stochastiques, on pourra voir par exemple [9], [14] et [15] pour plusieurs développements récents.…”
Section: Introductionunclassified