1988
DOI: 10.1007/978-3-642-83562-9
|View full text |Cite
|
Sign up to set email alerts
|

Bewegungssteuerung durch Rechnersehen

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
2

Year Published

1992
1992
1998
1998

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 25 publications
(4 citation statements)
references
References 0 publications
0
2
0
2
Order By: Relevance
“…3D shape models exhibit the spatial distribution of visual features which allow objects to be recognized and tracked. In order to exploit both dynamical and shape models at the same time, the prediction error feedback scheme for recursive state estimation developed by Kalman and successors in the 1960's has been extended to image sequence processing by our group [2]. There are many publications on this approach so that only a short summary will be given here (see e.g., the survey articles [3,4]).…”
Section: The 4d-approach As the Core Of Expectation-driven Visionmentioning
confidence: 99%
See 1 more Smart Citation
“…3D shape models exhibit the spatial distribution of visual features which allow objects to be recognized and tracked. In order to exploit both dynamical and shape models at the same time, the prediction error feedback scheme for recursive state estimation developed by Kalman and successors in the 1960's has been extended to image sequence processing by our group [2]. There are many publications on this approach so that only a short summary will be given here (see e.g., the survey articles [3,4]).…”
Section: The 4d-approach As the Core Of Expectation-driven Visionmentioning
confidence: 99%
“…For improving numerical performance, the UD-factorized version of the square-root-filter is used [5]. Details may be found in [2,[6][7][8]. By exploiting the sparseness of the transition matrix in the dynamical models a speedup can be achieved.…”
Section: The 4d-approach As the Core Of Expectation-driven Visionmentioning
confidence: 99%
“…Wählt man den Zustandsvektor gemäß (17) so lautet das dynamische Modell des Roboters als allgemeine Vektordifferentialgleichung mit u^it) = lu.u^u^Y, (18) dem Eingangsvektor. Die Aufstellung der Systemmatrix F und der Steuermatrix G sowie die anschließende Diskretisierung des Systems erfolgt mit den für hneare Systeme gültigen Standardverfahren der Regelungstechnik, z.B.…”
unclassified
“…Die Wahl einer starren Grenze wirft daher Probleme auf.Mit Hilfe der Innovationskovarianz (Gl. (28)) läßt sich jedoch direkt eine an die augenblickliche Güte der Schätzung angepaßte und damit variable Fehlerschranke zur Störerkennung ableiten[17]. Der erste Term in Gl.…”
unclassified