2024
DOI: 10.1145/3638245
|View full text |Cite
|
Sign up to set email alerts
|

Beyond Accuracy: An Empirical Study on Unit Testing in Open-source Deep Learning Projects

Han Wang,
Sijia Yu,
Chunyang Chen
et al.

Abstract: Deep Learning (DL) models have rapidly advanced, focusing on achieving high performance through testing model accuracy and robustness. However, it is unclear whether DL projects, as software systems, are tested thoroughly or functionally correct when there is a need to treat and test them like other software systems. Therefore, we empirically study the unit tests in open-source DL projects, analyzing 9,129 projects from GitHub. We find that: 1) unit tested DL projects have positive correlation with the open-so… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 50 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?