Small-ring cage hydrocarbons are common bioisosteres for para-substituted benzene rings in drug design 1 . The popularity of these structures derives from the superior pharmacokinetic properties they exhibit compared to the parent aromatics, including improved solubility and reduced susceptibility to metabolism 2,3 . A prime example is the bicyclo[1.1.1]pentane motif, which is mainly synthesised by ring-opening of the inter-bridgehead bond of the strained hydrocarbon [1.1.1]propellane with radicals or anions 4 . In contrast, scaffolds mimicking metasubstituted arenes are lacking due to the challenge of synthesising saturated isosteres that accurately reproduce substituent vectors 5 . Here we show that bicyclo[3.1.1]heptanes (BCHeps), hydrocarbons whose bridgehead substituents map precisely onto the geometry of meta-substituted benzenes, can be conveniently accessed from [3.1.1]propellane. We found that [3.1.1]propellane can be synthesized on multigram scale, and readily undergoes a range of radical-based transformations to generate medicinally-relevant carbon-and heteroatom-substituted BCHeps, including pharmaceutical