Photocatalysis, directly converting solar energy into chemical energy, is identified as an ideal strategy to reduce the increasing consumption of fossil fuels and facilitate carbon neutralization. In the past few years, a great number of endeavors have been devoted to developing photocatalysts with a high conversion efficiency and selectivity. Atomically surficial modulation strategies, including surface vacancies, single-atom modification, and dual-site components, exhibited positive impacts on tuning key steps of photocatalytic reactions. In this mini-review, we focus on the latest progress of the atomically surficial modulations on two-dimensional semiconductor photocatalysts and their role in enhancing selectively photocatalytic performance. We hope that this mini-review could provide new insights for researchers on nanosynthesis and photocatalysis.