Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Serious crime modelling typically needs to be undertaken securely behind a firewall where police knowledge and capabilities remain undisclosed. Data informing an ongoing incident are often sparse; a large proportion of relevant data only come to light after the incident culminates or after police intervene—by which point it is too late to make use of the data to aid real-time decision-making for the incident in question. Much of the data that are available to the police to support real-time decision-making are highly confidential and cannot be shared with academics, and are therefore missing to them. In this paper, we describe the development of a formal protocol where a graphical model is used as a framework for securely translating a base model designed by an academic team to a fully embellished model for use by a police team. We then show, for the first time, how libraries of these models can be built and used for real-time decision support to circumvent the challenges of data missingness seen in such a secure environment through the ability to match ongoing plots to existing models within the library.The parallel development described by this protocol ensures that any sensitive information collected by police and missing to academics remains secured behind a firewall. The protocol nevertheless guides police so that they are able to combine the typically incomplete data streams that are open source with their more sensitive information in a formal and justifiable way. We illustrate the application of this protocol by describing how a new entry—a suspected vehicle attack—can be embedded into such a police library of criminal plots.
Serious crime modelling typically needs to be undertaken securely behind a firewall where police knowledge and capabilities remain undisclosed. Data informing an ongoing incident are often sparse; a large proportion of relevant data only come to light after the incident culminates or after police intervene—by which point it is too late to make use of the data to aid real-time decision-making for the incident in question. Much of the data that are available to the police to support real-time decision-making are highly confidential and cannot be shared with academics, and are therefore missing to them. In this paper, we describe the development of a formal protocol where a graphical model is used as a framework for securely translating a base model designed by an academic team to a fully embellished model for use by a police team. We then show, for the first time, how libraries of these models can be built and used for real-time decision support to circumvent the challenges of data missingness seen in such a secure environment through the ability to match ongoing plots to existing models within the library.The parallel development described by this protocol ensures that any sensitive information collected by police and missing to academics remains secured behind a firewall. The protocol nevertheless guides police so that they are able to combine the typically incomplete data streams that are open source with their more sensitive information in a formal and justifiable way. We illustrate the application of this protocol by describing how a new entry—a suspected vehicle attack—can be embedded into such a police library of criminal plots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.