We introduce and analyze an abstract framework, and corresponding method, for compressed sensing in infinite dimensions. This extends the existing theory from signals in finite-dimensional vectors spaces to the case of separable Hilbert spaces. We explain why such a new theory is necessary, and demonstrate that existing finite-dimensional techniques are ill-suited for solving a number of important problems.This work stems from recent developments in generalized sampling theorems for classical (Nyquist rate) sampling that allows for reconstructions in arbitrary bases. The main conclusion of this paper is that one can extend these ideas to allow for significant subsampling of sparse or compressible signals. The key to these developments is the introduction of two new concepts in sampling theory, the stable sampling rate and the balancing property, which specify how to appropriately discretize the fundamentally infinitedimensional reconstruction problem.