Growth in individual size or biomass is a key demographic component in population models, with wide-ranging applications from quantifying species performance across abiotic or biotic conditions to assessing landscape-level dynamics under global change. In forest ecology, the responses of tree growth to biotic interactions are widely held to be crucial for understanding forest diversity, function, and structure. To date, most studies on plant-plant interactions only examine the additive competitive or facilitative interactions between species pairs; however, there is increasing evidence of non-additive, higher-order interactions (HOIs) impacting species demographic rates. When HOIs are present, the dynamics of a multispecies community cannot be fully understood or accurately predicted solely from pairwise outcomes because of how additional species "interfere" with the direct, pairwise interactions. Such HOIs should be particularly prevalent when species show non-linear functional responses to resource availability and resource-acquisition traits themselves are density dependent. With this in mind, we used data from a tropical secondary forest-a system that fulfills both of these conditions-to build an ontogenetic diameter growth model for individuals across 10 woody-plant species. We allowed both direct and indirect interactions within communities to influence the species-specific growth parameters in a generalized Lotka-Volterra model. Specifically, indirect interactions entered the model as higher-order quadratic terms, i.e., non-additive effects of conspecific and heterospecific neighbor size on the focal individual's growth. For the whole community and for four out of 10 focal species, the model that included HOIs had more statistical support than the model that included only direct interactions, despite the former containing a far greater number of parameters. HOIs had comparable effect sizes to direct interactions, and tended to further reduce the diameter growth rates of most species beyond what direct interactions had already reduced. In a simulation of successional stand dynamics, the inclusion of HOIs led to rank swaps in species' diameter hierarchies, even when community-level size distributions remained qualitatively similar. Our study highlights the implications, and discusses possible mechanisms, of non-additive density dependence in highly diverse and light-competitive tropical forests.