Diabetes is prevalent worldwide, with >90% of the cases identified as Type 2 diabetes. High blood sugar (hyperglycemia) is the hallmark symptom of diabetes, with prolonged and uncontrolled levels contributing to subsequent complications. Animal models have been used to study these complications, which include retinopathy, nephropathy, and peripheral neuropathy. More recent studies have focused on cognitive behaviors due to the increased risk of dementia/cognitive deficits that are reported to occur in older Type 2 diabetic patients. In this review, we collate the data reported from specific animal models (i.e., mouse, rat, zebrafish) that have been examined for changes in both retina/vision (retinopathy) and brain/cognition, including db/db mice, Goto-Kakizaki rats, Zucker Diabetic Fatty rats, high-fat diet-fed rodents and zebrafish, and hyperglycemic zebrafish induced by glucose immersion. These models were selected because rodents are widely recognized as established models for studying diabetic complications, while zebrafish represent a newer model in this field. Our goal is to (1) summarize the published findings relevant to these models, (2) identify similarities in cellular mechanisms underlying the disease progression that occur in both tissues, and (3) address the hypothesis that hyperglycemic-induced changes in retina precede or predict later complications in brain.