The evolutionary potential of traits is governed by the amount of heritable variation available to selection. While this is typically quantified based on genetic variation in a focal individual for its own traits (direct genetic effects, DGEs), when social interactions occur, genetic variation in interacting partners can influence a focal individual’s traits (indirect genetic effects, IGEs). Theory and studies on domesticated species have suggested IGEs can greatly impact evolutionary trajectories, but whether this is true more broadly remains unclear. Here, we perform a systematic review and meta-analysis to quantify the amount of trait variance explained by IGEs and the contribution of IGEs to predictions of adaptive potential. We identified 180 effect sizes from 47 studies across 21 species and found that, on average, IGEs of a single social partner account for a small but statistically significant amount of phenotypic variation (0.03). As IGEs affect the trait values of each interacting group member and due to a typically positive—although statistically nonsignificant—correlation with DGEs (rDGE-IGE = 0.26), IGEs ultimately increase trait heritability substantially from 0.27 (narrow-sense heritability) to 0.45 (total heritable variance). This 66% average increase in heritability suggests IGEs can increase the amount of genetic variation available to selection. Furthermore, whilst showing considerable variation across studies, IGEs were most prominent for behaviors and, to a lesser extent, for reproduction and survival, in contrast to morphological, metabolic, physiological, and development traits. Our meta-analysis, therefore, shows that IGEs tend to enhance the evolutionary potential of traits, especially for those tightly related to interactions with other individuals, such as behavior and reproduction.