We study the Bose-Hubbard model for three sites in a symmetric, triangular configuration and search for quantum signatures of the classical regime of oscillatory instabilities, known to appear through Hamiltonian Hopf bifurcations for the "single-depleted-well" family of stationary states in the discrete nonlinear Schrödinger equation. In the regimes of classical stability, single quantum eigenstates with properties analogous to those of the classical stationary states can be identified already for rather small particle numbers. On the other hand, in the instability regime the interaction with other eigenstates through avoided crossings leads to strong mixing, and no single eigenstate with classical-like properties can be seen. We compare the quantum dynamics resulting from initial conditions taken as perturbed quantum eigenstates and SU(3) coherent states, respectively, in a quantum-semiclassical transitional regime of 10-100 particles. While the perturbed quantum eigenstates do not show a classical-like behavior in the instability regime, a coherent state behaves analogously to a perturbed classical stationary state, and exhibits initially resonant oscillations with oscillation frequencies well described by classical internal-mode oscillations.