2019
DOI: 10.18178/ijmlc.2019.9.4.825
|View full text |Cite
|
Sign up to set email alerts
|

BGP Anomaly Prediction Using Ensemble Learning

Abstract: This paper investigates anomalies such as worms, power outages, and routing table leak (RTL) events occurring in Border Gateway Protocol (BGP) that can cause connectivity and data loss issues. Ensemble learning is a machine learning model employing multiple classifiers in order to reliably identify network anomalies. We use bagging, boosting, and random forests ensemble models trained on network anomaly datasets for classification improvement. Models were compared with respect to the following performance metr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?