Clusterin (CLU), a multifunctional chaperonic glycoprotein associated with diverse cellular functions has been shown to act as an oncogene or tumour suppressor gene in different cancers, implying a dual role in tumorigenesis. Here, we investigated the expression of CLU isoforms, their subcellular localization and functional significance in oral cancer cells. Significant downregulation of secretory CLU (sCLU) transcripts was observed in oral cancer cell lines and tumours versus normal cells while the nuclear CLU (nCLU) transcripts were undetectable. We demonstrated for the first time the nucleolar localization of sCLU, its response to different nucleolar stresses and association with cajal bodies post nucleolar stress. Functionally, knockdown of CLU revealed its negative association with ribosome biogenesis implying a possible tumour suppressor like role in oral cancers. Further, loss of sCLU in these cells also resulted in altered nuclear morphology and shrunken tubulin filaments. In addition, the levels of nucleolar Nucleophosmin 1(NPM1) and Fibrillarin, known to regulate nuclear morphology were downregulated indicating a possible role of sCLU in their stabilization. Further, an in silico docking approach to gain insights into the interaction of sCLU with nucleolar proteins NPM1, Fibrillarin, UBF and Nucleolin, revealed the involvement of a conserved region comprising of amino acid residues 140‐155 of sCLU β‐chain, specifically via the Phe152 residue in hydrophobic interactions with these client nucleolar proteins indicating a possible stabilizing or regulatory role of sCLU.
Significance of the study
This is the first study to demonstrate the nucleolar localization of sCLU and its associated functions in oral cancer cells. Downregulation of sCLU in oral cancer tissues and cell lines, and its negative association with ribogenesis suggest its tumour suppressor like role in oral cancers. The possible role of sCLU in stabilization or regulation of different nucleolar proteins thereby impacting their functions is also implicated.