Recent advancements in construction robotics have significantly transformed the construction industry by delivering safer and more efficient solutions for handling complex and hazardous tasks. Despite these innovations, ensuring safe robotic navigation in intricate indoor construction environments, such as attics, remains a significant challenge. This study introduces a robust 3‐dimensional (3D) robotic mapping and navigation method specifically tailored for these environments. Utilizing light detection and ranging, simultaneous localization and mapping, and neural networks, this method generates precise 3D maps. It also combines grid‐based pathfinding with deep reinforcement learning to enhance navigation and obstacle avoidance in dynamic and complex construction settings. An evaluation conducted in a simulated attic environment—characterized by various truss structures and continuously changing obstacles—affirms the method's efficacy. Compared to established benchmarks, this method not only achieves over 95% mapping accuracy but also improves navigation accuracy by 10% and boosts both efficiency and safety margins by over 30%.