Starting from the tri-Hamiltonian formulation of the Lagrange top in a six-dimensional phase space, we discuss the possible reductions of the Poisson tensors, the vector field and its Hamiltonian functions on a four-dimensional space. We show that the vector field of the Lagrange top possesses, on the reduced phase space, a quasibi-Hamiltonian formulation, which provides a set of separation variables for the corresponding Hamilton-Jacobi equation.