Bi-level Graph Learning Unveils Prognosis-Relevant Tumor Microenvironment Patterns in Breast Multiplexed Digital Pathology
Zhenzhen Wang,
Cesar A. Santa-Maria,
Aleksander S. Popel
et al.
Abstract:The tumor microenvironment is widely recognized for its central role in driving cancer progression and influencing prognostic outcomes. Despite extensive research efforts dedicated to characterizing this complex and heterogeneous environment, considerable challenges persist. In this study, we introduce a data-driven approach for identifying patterns of cell organizations in the tumor microenvironment that are associated with patient prognoses. Our methodology relies on the construction of a bi-level graph mode… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.