Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Development of a native language robust ASR framework is very challenging as well as an active area of research. Although an urge for investigation of effective front-end as well as back-end approaches are required for tackling environment differences, large training complexity and inter-speaker variability in achieving success of a recognition system. In this paper, four front-end approaches: mel-frequency cepstral coefficients (MFCC), Gammatone frequency cepstral coefficients (GFCC), relative spectral-perceptual linear prediction (RASTA-PLP) and power-normalized cepstral coefficients (PNCC) have been investigated to generate unique and robust feature vectors at different SNR values. Furthermore, to handle the large training data complexity, parameter optimization has been performed with sequence-discriminative training techniques: maximum mutual information (MMI), minimum phone error (MPE), boosted-MMI (bMMI), and state-level minimum Bayes risk (sMBR). It has been demonstrated by selection of an optimal value of parameters using lattice generation, and adjustments of learning rates. In proposed framework, four different systems have been tested by analyzing various feature extraction approaches (with or without speaker normalization through Vocal Tract Length Normalization (VTLN) approach in test set) and classification strategy on with or without artificial extension of train dataset. To compare each system performance, true matched (adult train and test—S1, child train and test—S2) and mismatched (adult train and child test—S3, adult + child train and child test—S4) systems on large adult and very small Punjabi clean speech corpus have been demonstrated. Consequently, gender-based in-domain data augmented is used to moderate acoustic and phonetic variations throughout adult and children’s speech under mismatched conditions. The experiment result shows that an effective framework developed on PNCC + VTLN front-end approach using TDNN-sMBR-based model through parameter optimization technique yields a relative improvement (RI) of 40.18%, 47.51%, and 49.87% in matched, mismatched and gender-based in-domain augmented system under typical clean and noisy conditions, respectively.
Development of a native language robust ASR framework is very challenging as well as an active area of research. Although an urge for investigation of effective front-end as well as back-end approaches are required for tackling environment differences, large training complexity and inter-speaker variability in achieving success of a recognition system. In this paper, four front-end approaches: mel-frequency cepstral coefficients (MFCC), Gammatone frequency cepstral coefficients (GFCC), relative spectral-perceptual linear prediction (RASTA-PLP) and power-normalized cepstral coefficients (PNCC) have been investigated to generate unique and robust feature vectors at different SNR values. Furthermore, to handle the large training data complexity, parameter optimization has been performed with sequence-discriminative training techniques: maximum mutual information (MMI), minimum phone error (MPE), boosted-MMI (bMMI), and state-level minimum Bayes risk (sMBR). It has been demonstrated by selection of an optimal value of parameters using lattice generation, and adjustments of learning rates. In proposed framework, four different systems have been tested by analyzing various feature extraction approaches (with or without speaker normalization through Vocal Tract Length Normalization (VTLN) approach in test set) and classification strategy on with or without artificial extension of train dataset. To compare each system performance, true matched (adult train and test—S1, child train and test—S2) and mismatched (adult train and child test—S3, adult + child train and child test—S4) systems on large adult and very small Punjabi clean speech corpus have been demonstrated. Consequently, gender-based in-domain data augmented is used to moderate acoustic and phonetic variations throughout adult and children’s speech under mismatched conditions. The experiment result shows that an effective framework developed on PNCC + VTLN front-end approach using TDNN-sMBR-based model through parameter optimization technique yields a relative improvement (RI) of 40.18%, 47.51%, and 49.87% in matched, mismatched and gender-based in-domain augmented system under typical clean and noisy conditions, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.