Purpose
This study aims to address the hybrid open shop problem (HOSP) with respect to the minimization of the overall finishing time or makespan. In the HOSP, we have to process n jobs in stages without preemption. Each job must be processed once in every stage, there is a set of mk identical machines in stage k and the production flow is immaterial.
Design/methodology/approach
Computational experiments carried out on a set of randomly generated instances showed that the minimal idleness heuristic (MIH) priority rule outperforms the longest processing time (LPT) rule proposed in the literature and the other proposed constructive methods on most instances.
Findings
The proposed mathematical model outperformed the existing model in the literature with respect to computing time, for small-sized instances, and solution quality within a time limit, for medium- and large-sized instances. The authors’ hybrid iterated local search (ILS) improved the solutions of the MIH rule, drastically outperforming the models on large-sized instances with respect to solution quality.
Originality/value
The authors formalize the HOSP, as well as argue its NP-hardness, and propose a mixed integer linear programming model to solve it. The authors propose several priority rules – constructive heuristics based on priority measures – for finding feasible solutions for the problem, consisting of adaptations of classical priority rules for scheduling problems. The authors also propose a hybrid ILS for improving the priority rules solutions.