In recent decades, great advances have been made in the field of tumor treatment. Especially, cell-based therapy targeting tumor associated antigen (TAA) has developed tremendously. T cells were engineered to have the ability to attack tumor cells by generating CAR constructs consisting of genes encoding scFv, a co-stimulatory domain (CD28 or TNFRSF9), and CD247 signaling domains for T cell proliferation and activation. Principally, CAR-T cells are activated by recognizing TAA by scFv on the T cell surface, and then signaling domains inside cells connected by scFv are subsequently activated to induce downstream signaling pathways involving T cell proliferation, activation, and production of cytokines. Many efforts have been made to increase the efficacy and persistence and also to decrease T cell exhaustion. Overall, allogeneic and universal CAR-T generation has attracted much attention because of their wide and prompt usage for patients. In this review, we summarized the current techniques for generation of allogeneic and universal CAR-T cells along with their disadvantages and limitations that still need to be overcome.