Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Fibrosis is a pathological process characterized by the excessive deposition of extracellular matrix in the tissue's extracellular space, leading to structural injury and organ dysfunction, and even organ failure, posing a threat to human life. Despite mounting evidence suggesting that fibrosis is reversible, effective treatments for fibrotic diseases are lacking. Accumulating evidence has elucidated that ribonucleic acid (RNA) modifications have emerged as novel mechanisms regulating gene expression. N6‐methyladenosine (m6A) modification is a well‐known prevalent RNA posttranscriptional modification that participates in essential biological processes such as RNA splicing, translation, and degradation. It is tightly implicated in a wide range of cellular processes and various human diseases, particularly in organ fibrosis. The m6A modification is a dynamic and reversible process regulated by methylases, commonly known as “writers,” and demethylases referred to as “erasers,” while m6A modifications are recognized by “readers.” Accumulating evidence suggests that m6A modification on RNAs is tightly associated with fibrotic diseases of visceral organs including the lungs, heart, liver, and kidney. In this review, recent advances in the impact of m6A methylation of RNAs on visceral organ fibrosis are highlighted and the potential prospects for therapy in treating fibrotic diseases of visceral organs are discussed.
Fibrosis is a pathological process characterized by the excessive deposition of extracellular matrix in the tissue's extracellular space, leading to structural injury and organ dysfunction, and even organ failure, posing a threat to human life. Despite mounting evidence suggesting that fibrosis is reversible, effective treatments for fibrotic diseases are lacking. Accumulating evidence has elucidated that ribonucleic acid (RNA) modifications have emerged as novel mechanisms regulating gene expression. N6‐methyladenosine (m6A) modification is a well‐known prevalent RNA posttranscriptional modification that participates in essential biological processes such as RNA splicing, translation, and degradation. It is tightly implicated in a wide range of cellular processes and various human diseases, particularly in organ fibrosis. The m6A modification is a dynamic and reversible process regulated by methylases, commonly known as “writers,” and demethylases referred to as “erasers,” while m6A modifications are recognized by “readers.” Accumulating evidence suggests that m6A modification on RNAs is tightly associated with fibrotic diseases of visceral organs including the lungs, heart, liver, and kidney. In this review, recent advances in the impact of m6A methylation of RNAs on visceral organ fibrosis are highlighted and the potential prospects for therapy in treating fibrotic diseases of visceral organs are discussed.
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis. Next generation sequencing (NGS) dataset GSE243039 was obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein-protein interaction (PPI) network was constructed and modules were analysed using the Human Integrated Protein-Protein Interaction rEference (HIPIE) database and Cytoscape software, and hub genes were identified. Subsequantely, a network between miRNAs and hub genes, and network between TFss and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve (ROC) analysis was used to validate the hub genes. A total of 958 DEGs, including 479 up regulated genes and 479 down regulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including VCAM1, SNCA, PRKCB, ADRB2, FOXQ1, MDFI, ACTBL2, PRKD1, DAPK1 and ACTC1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including TCF3 and CLOCK, were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network. This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment, and monitoring of endometriosis.
Background Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis. Methods Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes. Results A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network. Conclusions This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.